首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   7篇
  2021年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1972年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有85条查询结果,搜索用时 437 毫秒
41.
Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function   总被引:15,自引:0,他引:15       下载免费PDF全文
The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association.  相似文献   
42.
Although Calbindin-D9k (CaBP-9k), a cytosolic calcium binding protein which has calcium binding sites, is expressed in various tissues, i.e., intestine, uterus, and placenta, potential roles of this gene and its protein are not clearly understood. Uterine CaBP-9k may be involved in controlling myometrial activity related with intracellular calcium level and is not under the control of vitamin D despite the presence of vitamin D receptors. But, it is under the control of the sex steroid hormones, estrogen (E2) and progesterone (P4), in female reproductive systems including the uterus and placenta. Thus, in this review, we summarize recent research literature in regards to the expression and regulation of CaBP-9k in mammals and introduce the research data of recent studies by us and others.  相似文献   
43.
The capacity of DNA damaging agents to induce apoptosis is regulated by target gene induction by p53. We found that p53 targeted MDM2 in cells in which DNA repair was occurring, but persistent DNA damage induced by chemotherapy led p53 to selectively target PTEN. High dose chemotherapy induced the phosphorylation of p53 on serine 46, whereas low dose chemotherapy did not. A nonphosphorylatable serine 46 to alanine p53 mutant (S46A) targeted the MDM2 promoter in preference to that for PTEN. A serine 46 to aspartate mutant (S46D, a phosphorylation mimic) targeted PTEN in preference to MDM2. These observations show that phosphorylation of serine 46 in p53 is sufficient for it to induce the PTEN (phosphatase and tensin homolog deleted on chromosome ten) tumor suppressor protein in preference to MDM2. S46A induced significantly less cell death than the S46D in cells. The phosphorylation-induced change of p53 promoter targeting suppresses the induction of MDM2 and the formation of the autoregulatory feedback loop. Induction of PTEN by p53 followed by expression of PTEN inhibits AKT-induced translocation of MDM2 into the nucleus and sustains p53 function. The protection of p53 from MDM2 by PTEN and the damage-induced activation of PTEN by phosphorylated p53 leads to the formation of an apoptotic amplification cycle in which p53 and PTEN coordinately increase cellular apoptosis.  相似文献   
44.
Tansley Review No. 116   总被引:3,自引:0,他引:3  
  相似文献   
45.
46.

Background  

Antagonists of growth hormone-releasing hormone (GHRH) are being developed for the treatment of various human cancers.  相似文献   
47.

Background  

A large number of genes usually show differential expressions in a microarray experiment with two types of tissues, and the p-values of a proper statistical test are often used to quantify the significance of these differences. The genes with small p-values are then picked as the genes responsible for the differences in the tissue RNA expressions. One key question is what should be the threshold to consider the p-values small. There is always a trade off between this threshold and the rate of false claims. Recent statistical literature shows that the false discovery rate (FDR) criterion is a powerful and reasonable criterion to pick those genes with differential expression. Moreover, the power of detection can be increased by knowing the number of non-differential expression genes. While this number is unknown in practice, there are methods to estimate it from data. The purpose of this paper is to present a new method of estimating this number and use it for the FDR procedure construction.  相似文献   
48.
Chronic myeloid leukemia (CML) occurs due to t(9,22) (q34;q11) and molecularly BCR/ABL gene fusion. About 15–18% Philadelphia positive CML patients have gene deletions around the translocation breakpoints on 9q34.1. The microRNAs (miRNAs), namely miR-219-2 and miR-199b, centromeric to the ABL1 gene are frequently lost in CML patients. We have designed a study to determine miR-219-2 and miR-199b expression levels which would help to understand the prognosis of imatinib therapy. A total of 150 CML patients were analyzed to identify 9q deletion. Fluorescent in-situ hybridization (FISH) was performed using BCR/ABL dual color, dual fusion probe to study the signal pattern and BAC probes for miR-199b and miR-219-2 (RP11-339B21 and RP11-395P17) to study the miRNA deletions. The expression level of miRNA was analyzed by real-time polymerase chain reaction (RT-PCR). FISH analysis revealed 9q34.1 deletion in 34 (23%) CML patients. The deletions were not detected using BAC probes for miRNAs in 9q deleted patients. The expression analysis showed down-regulation of miR-199b and miR-219-2 in the 9q deleted patients (34 CML) as compared to a pool of patients without deletion. However, miR-199b (9q34.11) was significantly (p = 0.001) down-regulated compared to miR-219-2. The follow-up study showed that the miR-199b was found to be strongly associated with imatinib resistance, as 44.11% patients showed resistance to imatinib therapy. Hence, the deletion in 9q34.1 region (ABL) plays an important role in disease pathogenesis. Eventually, miRNAs can provide new therapeutic strategies and can be used as a prognostic indicator.  相似文献   
49.

Background

The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA) axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD). However, the brainstem’s role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI), we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls.

Methods

MDD patients (n = 95) and age- and gender-matched controls (n = 34) were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum), solitary tract (connecting brainstem to amygdala) and corticospinal tract (connecting brainstem to precentral cortex). Fractional anisotropy (FA) was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants.

Results

MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test), which is a “bottom up” afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity.

Conclusions

The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.  相似文献   
50.

Background  

To better characterize the value of cerebrospinal fluid (CSF) proteins as diagnostic markers in a clinical population of subacute encephalopathy patients with relatively low prevalence of sporadic Creutzfeldt-Jakob disease (sCJD), we studied the diagnostic accuracies of several such markers (14-3-3, tau and S100B) in 1000 prospectively and sequentially recruited Canadian patients with clinically suspected sCJD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号